
Distributed Observation Allocation for a Large-Scale
Constellation

Shreya Parjan
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, USA

shreya.parjan@jpl.nasa.gov

Steve Chien
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, USA

steve.a.chien@jpl.nasa.gov

Ryan Harrod
Jet Propulsion Laboratory

California Institute of Technology
Pasadena, USA

ryan.w.harrod@jpl.nasa.gov

ABSTRACT
Increased space and ground sensing are enabling new measure-
ments of a wide range of Earth Science phenomena, including vol-
canism, flooding, wildfires, and weather. Large-scale observation
constellations of hundreds of assets already exist (e.g. Planet) with
several constellations of tens of thousands of assets planned. New
challenges exist to rapidly assimilate available data and to optimize
measurements (e.g. direct assets) to best observe these complex
and dynamic spatiotemporal phenomena. We describe automated
centralized and distributed Artificial Intelligence/Multi Agent meth-
ods to allocate observations in a constellation and compare their
performance using realistic problem and orbit distributions.

KEYWORDS
Sensorweb, Artificial Intelligence, Autonomous Systems, Internet of
Things, Distributed Constraint Optimization, Multi-Agent Planning

ACM Reference Format:
Shreya Parjan, Steve Chien, and Ryan Harrod. 2022. Distributed Observation
Allocation for a Large-Scale Constellation. In The 13th Workshop on Opti-
mization and Learning in Multiagent Systems (OptLearnMAS-22), at AAMAS
2022 (virtual), Auckland, New Zealand, May 10, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Worldwide there is an explosion of information sources relevant
to environmental monitoring. Ground based sensors are being de-
ployed at an incredible rate, and their data is more easily accessible
via the Internet of Things (IoT). This explosion of networked sen-
sors even extends to space, where traditional and New Space actors
have deployed worldwide monitoring assets such as Terra and
Aqua, Suomi-NPP, Sentinel, and Planet’s Dove, Skysat, and other
constellations (with over 100 spacecraft).

With many potential information sources and space assets come
two distinct problems:

(1) combining the many information sources to track complex
spatiotemporal science phenomena; and

(2) tasking the large set of space assets with varying orbits, costs,
and capabilities.

Elsewhere the end-to-end sensorweb concept has been described [4]
including deployments to track flooding [7, 11], volcanic activ-
ity [5], and wildfires [6]. However, those pilots did not study con-
trol of constellations as they utilized only Earth Observing-1 under
direct sensorweb control, although they did submit requests to

The 13th Workshop on Optimization and Learning in Multiagent Systems (OptLearnMAS-
22), at AAMAS 2022 (virtual), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor
(eds.), May 10, 2022, Auckland, New Zealand. © 2022 California Institute of Technology.
Government sponsorship acknowledged.

commercial providers in a federated approach [3]. Prior work in
automated scheduling of constellations includes operational con-
trol of Dove [15] and Skybox (later Skysat) [1] as well as recent
studies on coordination in large-scale constellations like the work
described in this paper [2, 12, 14]. Most of these describe central-
ized resource allocation approaches, though notable exceptions
exist [13, 14]. Centralized approaches are vulnerable to: 1. loss or
compromise of the master node and 2. unreliable communication
among spacecraft. Even if a new master node can be elected, this
may be a time-consuming process. Distributed resource allocation
avoids these issues.

Motivated by work on Maximum Gain Messaging (MGM) and
Distributed Stochastic Algorithm (DSA), two incomplete Distributed
Constraint Optimization Problem (DCOP) algorithms [10, 16], we
present two types of Broadcast Decentralized (BD) algorithms, BD
Request Satisfaction and BD Contention, for a less computationally
intensive, heuristic search-based approach to the problem of obser-
vation request allocation for large-scale satellite constellations. We
aim to maximize the number of requests satisfied by agent observa-
tions and minimize the number of future requests agents cannot
observe due to data volume or slew constraints.

Existing work [13, 14] describes Parallel Single-Item Auctions
and Sequential Single-Item Auctions that rely on a single auction-
eer agent. In our BD algorithms, like the Consensus-Based Bundle
Algorithm (CBBA) [13], coordination instead occurs exclusively
between scheduling agents that may vary in their orbits, costs, and
capabilities. Unlike the CBBA approach, our BD algorithms consider
requests iteratively, eliminating the overhead of constructing and
evaluating bundles of requests. Existing work also applies the com-
plete Distributed Pseudo-tree Optimization Procedure (DPOP) al-
gorithm to solving the observation request allocation problem [14].
In contrast, our MGM and DSA inspired methods use a heuristic,
semi-stochastic approach for satellite agents to update whether
they are self-assigned to attempt to schedule an overflight for a
request, based on shared information about request satisfaction
alone (BD Request Satisfaction) or request satisfaction along with
reward and number of excess overflights for the current request
(BD Contention).

In this paper, Section 2 describes the request allocation problem
for large-scale constellations, Section 3 compares our Broadcast
Decentralized algorithms to our Centralized and Highly Decentral-
ized algorithms, and Section 4 evaluates all algorithms on a sample
allocation problem involving thousands of observation requests
distributed among hundreds of satellites.



2 PROBLEM FORMULATION
We study the problem of allocating observation requests to satellites.
Problem inputs are:

(1) [𝐻𝑠 , 𝐻𝑒 ]: the scheduling horizon, starting at time 𝐻𝑠 and
ending at time 𝐻𝑒 ;

(2) 𝐴: a set of agents {𝑎1 . . . 𝑎𝑚}, where individual spacecraft are
the primary agents in our implementation1;

(3) 𝐾 : a set of orbits {𝑘1 . . .𝑘𝑚}, one for each spacecraft agent
in A;

(4) 𝑇 : a set of point targets {𝑡1 . . . 𝑡𝑜 }, each defined with a name
and single pair of coordinates; and

(5) 𝑅: a set of requests {𝑟1 . . . 𝑟𝑝 }, where a request 𝑟𝑐 is defined
by which target 𝑡𝑏 to observe and when in [𝐻𝑠 , 𝐻𝑒 ] the user
would like 𝑡𝑏 to be observed.

From the above, we generate a set of overflights where each over-
flight is an opportunity for a spacecraft to view a specific target to
satisfy a request. Associated with each such overflight is a status
indicating if (in the current schedule) the spacecraft elects to satisfy
that request at that opportunity, and an associated reward for that
satisfied overflight, request pair.

(6) 𝑂 : a set of overflights {𝑂111 . . .𝑂ℎ𝑖 𝑗 }.𝑂ℎ𝑖 𝑗 specifies a time (in
Unix seconds) agent 𝑎ℎ could potentially schedule request
𝑟𝑖 . To distinguish between multiple overflights by the same
agent for the same request, we use an additional overflight
index 𝑗 .

(7) 𝑆 : a set of statuses {𝑠11 . . . 𝑠𝑚𝑝 }. 𝑠𝑚𝑝 has value 1 if agent 𝑎𝑚
schedules an observation to satisfy request 𝑟𝑝 and 0 other-
wise.

(8) 𝑊 : a set of computed rewards (Table 1) {𝑤11 . . .𝑤𝑚𝑝 }.𝑤𝑚𝑝

specifies the reward agent 𝑎𝑚 reaps for satisfying request
𝑟𝑝 .

We enforce the following physical constraints:

• Slew: in our experiments we use a simple model requiring
|𝑂𝑎𝑚𝑗 −𝑂𝑎𝑛𝑘 |>offset, where 𝑂𝑎𝑚𝑗 and 𝑂𝑎𝑛𝑘 are overflights
by the same agent for different requests and offset may be
specified by the user. We use offset = 30 seconds, but in a
more detailed model it would depend upon the pointings
required for the targets and spacecraft agility.

• Data Volume: an agent cannot schedule more than 𝑛𝑐𝑎𝑝 re-
quests during the scheduling horizon. In our experiments,
𝑛𝑐𝑎𝑝 = 1.5 × |𝑅 |/|𝐴|, so no single spacecraft can get more
than 150% of an evenly divided share of requests.

Given the above formulation, the scheduler’s objective is to
select a subset of the total overflights to maximize some function of
satisfied requests. In our preliminary formulation, the objective is
maximization of the number of requests satisfied but more realistic
formulations incorporating request priority, fairness, and other
metrics are clear areas for future work. A solution has the following
form:

1In our current formulation, 1 agent = 1 spacecraft, but in alternative formulations
such as a federated system, an agent might represent multiple spacecraft or there
could be multiple levels of hierarchy. For complex spacecraft platforms with many
instruments, multiple agents per spacecraft would also be an option.

max
𝑚∑︁
𝑖=1

𝑝∑︁
𝑗=1

𝑤𝑖 𝑗 such that (2) and (3) hold: (1)

𝑠𝑖𝑑 + 𝑠𝑖𝑒 ≤ 1 if |𝑂𝑖𝑑 𝑗 −𝑂𝑖𝑒𝑘 | ≤ offset (2)

where𝑂𝑖𝑑 𝑗 and𝑂𝑖𝑒𝑘 are overflights selected by agent 𝑎𝑖 to observe
each pair of requests 𝑟𝑑 and 𝑟𝑒 .

𝑝∑︁
𝑗=1

𝑠𝑖 𝑗 ≤ 𝑛cap (3)

for each agent 𝑎𝑖 .

3 A RANGE OF APPROACHES
Wepresent and analyze several families of algorithms for the request-
overflight allocation problem. For each target, a request may be
either for a single (e.g. observe on day 3) or repeat (e.g. observe every
hour) observation during [𝐻𝑠 , 𝐻𝑒 ]. We consider three algorithms:
Centralized, Broadcast Decentralized, and Highly Decentralized.
We further subdivide Broadcast Decentralized into Contention-
based and Request Satisfaction-based approaches. These methods
vary in their levels of centralization and the amount and types of
information shared among agents (Figure 1).

Figure 1: Information shared among agents in the various
algorithm types.

In the iterative Centralized algorithm, the central node only
shares each agent’s schedule of requests to observe after each it-
eration. In all decentralized algorithms, the initial set of requests
must be broadcasted to each agent so it can establish a local view
of the scheduling problem. Highly Decentralized is a single-pass
algorithm in which all agents receive the set of requests and attempt
to schedule them without any inter-agent communication.

The Broadcast Decentralized algorithms consist of two phases:
initialization and iteration. In initialization, agents determine how
many overflights they have during the scheduling horizon for each
request 𝑟𝑖 . In the BD Contention algorithm, this is broadcasted out
for all other agents to record for the initial iteration of the algorithm.
Agents with overflights for 𝑟𝑖 self-assign to find an overflight to
observe it with some probability, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (Table 1).



In the iteration phase, if a request was satisfied by multiple
agents’ overflights in the previous iteration, excess agents stochas-
tically unassign from it. If it was unsatisfied, additional unassigned
agents probabilistically self-assign to attempt to schedule the re-
quest in the current iteration. Agents update whether they are
self-assigned to observe a request in the current iteration based
on state information from the previous iteration of the algorithm.
This allows agents to avoid race conditions both in our current
single-threaded simulation of parallel execution and in a future
parallelized implementation. In BD Request Satisfaction, agents
broadcast whether they satisfied a request and update whether they
are self-assigned to attempt to schedule it in the current iteration
based on how many other agents satisfied it. In BD Contention,
agents broadcast whether they satisfied a request, along with the
number of free overflights they have remaining for that request
and their reward for satisfying it (a function of the number of free
overflights and number of conflicts the selected overflight has with
the agent’s overflights for other requests).

In the following paragraphs, we will use these functions:

(1) 𝐴𝑆𝑆𝐼𝐺𝑁 (𝑟𝑖 , 𝑎 𝑗 ): If agent 𝑎 𝑗 is not at capacity, select the over-
flight by 𝑎 𝑗 for request 𝑟𝑖 that conflicts with the fewest over-
flights 𝑎 𝑗 has for other requests. If successful, mark 𝑟𝑖 as
satisfied, rule out 𝑎 𝑗 ’s overflights that conflict with the iden-
tified overflight, add the identified overflight to 𝑎 𝑗 ’s schedule
of observations, and increment the count of requests 𝑎 𝑗 is
assigned to observe in the scheduling horizon.

(2) 𝑆𝐸𝐿𝐹_𝐴𝑆𝑆𝐼𝐺𝑁 (𝑟𝑖 , 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ): the current agent checks its
set of daytime overflights (solar zenith angle > 90◦) to see if
it has overflights for request 𝑟𝑖 . If so, the agent sets its self-
assignment status for request 𝑟𝑖 from 0 to 1 with probability
𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (Table 1). Returns a status of 0 or 1.

(3) 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇 (𝑟𝑖 , 𝑎 𝑗 , items): the current agent 𝑎 𝑗 instructs
all agents to record its values for the variables in items for
request 𝑟𝑖 in the current iteration of the algorithm.

(4) 𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸 (𝑟𝑖 ): the current agent searches for the over-
flight time it has for request 𝑟𝑖 that conflicts with the fewest
overflights it has for other requests. If successful, the agent
marks 𝑟𝑖 as satisfied, rules out its overflights that conflict
with the identified overflight, adds the identified overflight to
its schedule of observations, and increments the number of
requests it is assigned to observe in the scheduling horizon.
Returns 1) the assignment as a tuple with form (spacecraft ID,
request index, overflight time) and 2) the number of conflicts
the selected overflight has with the current agent’s other
overflights.

(5) 𝐸𝐿𝐼𝑀𝐼𝑁𝐴𝑇𝐸_𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 ): given the over-
flight time selected for agent 𝑎 𝑗 to observe request 𝑟𝑖 in the
tuple 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 , agent 𝑎 𝑗 records which of its over-
flights are no longer feasible if request 𝑟𝑖 is scheduled.

(6) 𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝑇𝐴𝑇𝑈𝑆 (𝑟𝑖 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛, 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛): based onwhether
request 𝑟𝑖 was satisfied, the current agent either unassigns
itself from request 𝑟𝑖 with probability 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛 or assigns
itself to request 𝑟𝑖 with probability 𝑃𝑎𝑠𝑠𝑖𝑔𝑛 (Figures 2, 3).

(7) 𝑆𝐻𝑈 𝐹𝐹𝐿𝐸 (𝑅): randomize order of the list of requests, 𝑅.
(8) 𝑆𝑂𝑅𝑇 (𝑅): sort the list of requests, 𝑅, using one of the sorting

methods named in Table 1.

3.1 Centralized Algorithm
Our baseline, Algorithm 1, solves the request allocation problem at
a master node and uses a Squeaky Wheel Optimization (SWO) [9]
to try to find the optimal schedule. The Centralized algorithm con-
siders requests in ascending order by an assigned ranking. The
initial ranking for a request is determined by the total number
of overflights that all agents have for it in the scheduling hori-
zon. From 𝑅, it creates a min-heap 𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 such that the top of
𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 is initially the request with the fewest overflights in the
scheduling horizon. Each request 𝑟𝑖 in R also maintains a max-heap
𝐴𝑚𝑎𝑥_ℎ𝑒𝑎𝑝,𝑟𝑖 of agents with overflights for 𝑟𝑖 . The agent at the top
of 𝐴𝑚𝑎𝑥_ℎ𝑒𝑎𝑝,𝑟𝑖 has the most overflights for 𝑟𝑖 .

Algorithm 1 pops the request with the lowest ranking, 𝑟0, from
𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 and assigns it to the agent with the most free overflights
for it in the scheduling horizon. If that agent is not at capacity, the
algorithm goes on to consider the request with the next lowest
ranking. Otherwise, it assigns 𝑟0 to the agent with the next most
overflights for it in the scheduling horizon. It repeats this procedure
before moving onto the next request until either 𝑟0 is satisfied
or there are no remaining agents with overflights for 𝑟0. A key
drawback of the Centralized algorithm is that the master node
manages state information for all agents, preventing parallelization.
If compromised, the master node can be re-elected, though this
process may be time consuming.

Once all requests have been considered, the SWO algorithm re-
wards and increases the ranking assigned to a request based on
whether it was satisfied or not. If the request was satisfied, its
ranking is increased. If the request was not satisfied, its ranking is
assigned to 0, to move it to the front of the priority queue in the
following iteration. Once all requests have been rewarded or penal-
ized, 𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 is created once more, in ascending order based on
ranking and the whole algorithm iterates again. The algorithm con-
tinues iterating until a predefined number of iterations is reached,
or an early exit condition is detected, such as all satellites being
subscribed at capacity.

3.2 Highly Decentralized Algorithm
The Highly Decentralized algorithm sits on the other end of the cen-
tralization spectrum, with no feedback shared among agents. For
this single-pass algorithm, only the initial set of requests is broad-
casted to all agents. Subsequently, agents independently schedule
requests based on their local view of the problem alone. Because
selecting an overflight to observe a request may eliminate other
conflicting overflights, the order in which requests are considered
matters. Thus, each agent randomizes the order in which it consid-
ers and attempts to schedule requests. In our current implementa-
tion of Algorithm 2, requests do not have associated priorities. If
an overflight is successfully found, conflicting overflights for other
requests are eliminated from the agent’s set of available overflights.

3.3 Broadcast Decentralized Algorithms
3.3.1 Motivation: Distributed Constraint Optimization. Our Broadcast
Decentralized (BD) algorithms are adapted from theMaximumGain
Messaging algorithm (MGM) and Distributed Stochastic Algorithm
(DSA) for solving Distributed Constraint Optimization Problems
(DCOPs) [8].



Algorithm 1: Centralized
1 function Centralized (𝑅,𝑂);
Input :A set of unsatisfied requests 𝑅, a set of overflights

𝑂 .
Output :𝑆 , a set of schedules for each agent 𝑎 𝑗 ∈ 𝐴.

2 while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
3 while |𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝 | > 0 do
4 pop 𝑟0, request with the next lowest ranking, from

𝑅𝑚𝑖𝑛_ℎ𝑒𝑎𝑝
5 if 𝑟0 has non-zero overflights in the scheduling

horizon then
6 while |𝐴𝑚𝑎𝑥_ℎ𝑒𝑎𝑝,𝑟0 | > 0 and 𝑟0 unsatisfied do
7 pop 𝑎𝑚𝑎𝑥,𝑟0 , agent with the next most

overflights for 𝑟0, from 𝐴𝑚𝑎𝑥_ℎ𝑒𝑎𝑝,𝑟0
8 𝐴𝑆𝑆𝐼𝐺𝑁 (𝑟0, 𝑎𝑚𝑎𝑥,𝑟0 )
9 end

10 end
11 end
12 if all requests are satisfied or all satellites are at max

capacity or the priority ordering in the next iteration
will be the same as the current iteration then

13 exit
14 end
15 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 + +
16 end
17 return 𝑆 ;

Algorithm 2: Highly Decentralized
1 function Highly Decentralized (𝑅,𝑂);
Input :A set of unsatisfied requests 𝑅, a set of overflights

𝑂 .
Output :𝑆 , a set of schedules for each agent 𝑎 𝑗 ∈ 𝐴.

2 for each agent 𝑎 𝑗 ∈ 𝐴 do
3 𝑆𝐻𝑈 𝐹𝐹𝐿𝐸 (𝑅)
4 for each request 𝑟𝑖 ∈ 𝑅 do
5 if 𝑎 𝑗 not at capacity then
6 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 , 𝑛𝑢𝑚_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠𝑎 𝑗 ,𝑟𝑖 =

𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸 (𝑟𝑖 , 𝑎 𝑗 )
7 if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 valid then
8 𝐸𝐿𝐼𝑀𝐼𝑁𝐴𝑇𝐸_𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 )
9 end

10 end
11 end
12 end
13 return 𝑆 ;

DCOPs are defined as tuples 𝑃 = (𝐴,𝑋, 𝐷,𝐶, 𝛼):
(1) 𝐴 = {𝑎1 . . . 𝑎𝑝 }, a set of agents.
(2) 𝑋 = {𝑥1 . . . 𝑥𝑛}, a set of variables such that 𝑛 ≥ 𝑚.
(3) 𝐷 = {𝐷1 . . .𝐷𝑛}, a set of domains for the corresponding

𝑥𝑖 ∈ 𝑋 .

(4) 𝐶 = {𝑐1 . . . 𝑐𝑘 }, a finite set of constraint functions involving
the variables in 𝑋 .

(5) 𝛼 : 𝑋 → 𝐴, a mapping of variables to agents.
Complete solutions to DCOPs assign a value to each 𝑥𝑖 ∈ 𝑋 while
satisfying all constraint functions in 𝐶 .

For our problem:
(1) 𝐴 = {𝑎1 . . . 𝑎𝑚}, the set of spacecraft agents.
(2) 𝑋 = {𝑜11 . . .𝑜𝑚𝑝 , 𝑠11 . . . 𝑠𝑚𝑝 ,𝑤11 . . .𝑤𝑚𝑝 } includes variables

where, for example: agent 𝑎𝑚 has 𝑜𝑚𝑝 free overflights for
request 𝑟𝑝 and if 𝑠𝑚𝑝 = 1, 𝑎𝑚 schedules request 𝑟𝑝 with
reward𝑤𝑚𝑝 .

(3) 𝐷 = {𝐷1 . . .𝐷3×𝑚×𝑝 }, a set of domains for the variables in 𝑋 :
the free overflight counts and rewards take on non-negative
integer values and the scheduling variables are binary deci-
sion variables with domain {0, 1}.

(4) 𝐶 = {𝑐1, 𝑐2}, where for some agent 𝑎𝑖 :
• 𝑐1: 𝑠𝑖𝑑 + 𝑠𝑖𝑒 ≤ 1 if |𝑂𝑖𝑑 𝑗 −𝑂𝑖𝑒𝑘 | ≤ offset (where 𝑂𝑖𝑑 𝑗 and
𝑂𝑖𝑒𝑘 are the overflights selected by agent 𝑎𝑖 to observe
each pair of requests 𝑟𝑑 and 𝑟𝑒 )

• 𝑐2: 𝑠𝑖1 + . . . + 𝑠𝑖𝑝 ≤ 𝑛𝑐𝑎𝑝
As before, our objective (Eq. 1) is to maximize the reward across

all agents for satisfying each request in 𝑅 while adhering to the
constraints in 𝐶 .

Both MGM and DSA are incomplete, synchronous, search-based
algorithms. In MGM, an agent communicates exclusively with its
neighbors: agents whose variables appear in the same cost func-
tion(s) as that agent’s own variables. Under our problem formula-
tion, for each request and at each iteration, the set of neighbors
would be all agents with free overflights for the request. Each agent
initializes its variable values randomly and repeats the following
procedure until some termination condition is reached:

(1) Broadcast variable values out to all neighbors.
(2) Receive values of neighbors’ variables and compute the max-

imum gain obtained by changing own variable values.
(3) Broadcast that gain out to all neighbors.
(4) Receive neighbors’ gains and update value if own gain is the

largest.
DSA is similar, but instead of steps 3 and 4, agents stochastically
decide whether to take on the variable values associated with max-
imum gain.

Combining the stochastic updating procedure from DSA and the
more informed updating procedure of MGM, agents in the Broad-
cast Decentralized algorithms update their self-assignment statuses
for a particular request in the semi-stochastic manner outlined in
Figures 2, 3 for the Contention and Request Satisfaction algorithms
respectively. This helps avoid local maxima when optimizing for
the number of successfully scheduled requests over iterations of
the algorithms.

The generic DCOP algorithms and our BD algorithms differ in
the order in which agents receive broadcasts. To maintain a consis-
tent view of the problem across all agents for each iteration, our
agents broadcast state information out to all others. Broadcasting
information to all agents increases the overall number of messages
exchanged but eliminates the need to continuously recompute or
reverify agents’ sets of neighbors. An excellent optic for future work
is the investigation of methods for computing neighborhoods to



Figure 2: 𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝑇𝐴𝑇𝑈𝑆 (𝑟𝑖 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛, 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛): Agent self-
assignment update procedure for BD Contention.

limit inter-agent communication to an “as needed” basis (in contrast
to our “broadcast to all” approach).

3.3.2 Broadcast Decentralized Algorithmic Variations. We intro-
duce two novel Broadcast Decentralized algorithms with twenty
variations along the following axes: required shared information,
agent allocation initialization, agent request sort procedure, and
agent reward for request satisfaction (Table 1). First, our approaches
vary in the amount of information shared between agents. The BD
Contention algorithm requires agents to share whether they sat-
isfied a request, their reward for doing so, and the number of free
overflights they have remaining for that request every iteration
(Algorithm 3). BD Request Satisfaction only requires agents to
broadcast whether or not they satisfied a request (Algorithm 4).

In both Broadcast Decentralized algorithms, agents iterate through
the set of requests broadcasted to them by the central node. Since
a selected overflight to schedule one request may eliminate con-
flicting overflights that an agent has for another request, the order
in which requests are considered matters. For each of the two
Broadcast Decentralized algorithms, the variations differ in their
sort functions but require agents to share the same information.
The three sort variations to determine the order in which agents
consider requests are:

(1) Iterative Global Free Overflight Sort: Agents sort requests at
the start of each iteration in ascending order by the cumula-
tive number of available overflights all agents have for each
request.

(2) Iterative Local Free Overflight Sort: Agents sort requests at
the start of each iteration in ascending order by the number
of available overflights they alone have for each request.

(3) Iterative Random Sort: Agents randomize the order of the
requests at the start of each iteration.

Because Iterative Global Overflight Sort requires contention infor-
mation (the number of free overflights for a request) to be shared
among agents, the only two Broadcast Decentralized Request Satis-
faction sort variations are Iterative Local Free Overflight Sort and
Iterative Random Sort.

Table 1: Broadcast Decentralized algorithmic variations.

Feature BD Contention BD Request Satisfaction

Required
Shared In-
formation
for Itera-
tion Phase
Update
Procedure

• Reward for ob-
serving request

• Number of
remaining, free
overflights for
request

• Request satisfac-
tion

• Request satisfac-
tion

Allocation
Initial-
ization
(𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 )
Options

• 𝑃𝑟𝑎𝑛𝑑𝑜𝑚 = user-
specified proba-
bility

• 𝑃𝑟𝑎𝑡𝑖𝑜 = # of
agent overflights
for request /
# of all agent
overflights for
request

• 𝑃𝑡𝑜𝑡𝑎𝑙_𝑜 𝑓 𝑠 = 1
/ # of all agent
overflights for re-
quest)

• 𝑃𝑟𝑎𝑛𝑑𝑜𝑚 = user-
specified proba-
bility

Local Re-
quest Sort
Procedure
Variations

• Iterative Global
Free Overflight
Sort (GFO)

• Iterative Local
Free Overflight
Sort (LFO)

• Iterative Ran-
dom Sort (RD)

• Iterative Local
Free Overflight
Sort (LFO)

• Iterative Ran-
dom Sort (RD)

Reward
Function
Varia-
tions for
Iteration-
Phase
Update
Procedure

• 𝑊𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 =

# of agent
overflights for
request - # of
agent conflicts
with selected
overflight

• 𝑊𝑟𝑎𝑡𝑖𝑜 = # of
agent overflights
for request /
1 + # of agent
conflicts with se-
lected overflight

• N/A (reward not
used)



Figure 3: 𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝑇𝐴𝑇𝑈𝑆 (𝑟𝑖 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛, 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛): Agent self-
assignment update procedure for BD Request Satisfaction.

During the initialization phase of BD Contention, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 , the
probability with which an agent initially self-assigns to attempt
to schedule a request, can take on one of three forms: 𝑃𝑟𝑎𝑛𝑑𝑜𝑚 is
a user-specified value between 0 and 1. 𝑃𝑟𝑎𝑡𝑖𝑜 is the ratio of the
number of initial overflights the agent has for the request to the total
number of initial overflights all agents have for the request. Finally,
𝑃𝑡𝑜𝑡𝑎𝑙_𝑜 𝑓 𝑠 is a ratio of 1 to the total number of initial overflights
all agents have for the request. Since overflight information isn’t
shared in BD Request Satisfaction, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 must be supplied by
the user as 𝑃𝑟𝑎𝑛𝑑𝑜𝑚 .

During the iteration phase, the procedures by which agents up-
date whether they are self-assigned to a request for BD Contention
and BD Request Satisfaction are outlined in Figures 2, 3, respec-
tively. In general, agents update whether they are self-assigned to
a request in the current iteration based on broadcasted informa-
tion from the previous iteration. BD Contention requires agents
to consider their reward for satisfying a request in their update
procedure. The reward may either be a simple difference between
the number of free overflights the agent has for the request and
the number of conflicts its selected overflight has with the agent’s
other overflights or a ratio of the number of free overflights to 1 +
the number of conflicts.

The first reward function,𝑊𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 , rewards agents that se-
lect an overflight with fewer conflicts with their overflights for other
requests to schedule the request and have more free overflights
(more excess capacity) for the request. Agents with more capacity
are also more likely to have more conflicts and𝑊𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 can
also take on negative values when the number of conflicts exceeds
the number of free overflights. The second reward function,𝑊𝑟𝑎𝑡𝑖𝑜 ,
offers users a non-negative alternative by computing a ratio instead.

When an agent unassigns itself from a request 𝑟𝑢 , it must add
back the overflights for other requests that conflicted with the
overflight it may have selected to observe 𝑟𝑢 . In BD Contention,
the agent must also broadcast the updated number of overflights
for each of these other requests to maintain consistency across all
agents’ views of the problem.

Algorithm 3: Broadcast Decentralized Request Satisfaction
1 function BDRequestSatisfaction (𝑅,𝑂);
Input :A set of requests 𝑅, a set of overflights 𝑂 .
Output :𝑆 , a set of schedules for each agent 𝑎 𝑗 ∈ 𝐴.

2 for each agent 𝑎 𝑗 ∈ 𝐴 do
3 𝑆𝑂𝑅𝑇 (𝑅)
4 for each request 𝑟𝑖 ∈ 𝑅 that 𝑎 𝑗 has overflights for do
5 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑢𝑠𝑎 𝑗 ,𝑟𝑖 =

𝑆𝐸𝐿𝐹_𝐴𝑆𝑆𝐼𝐺𝑁 (𝑟𝑖 , 𝑎 𝑗 , 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 )
6 𝑛𝑢𝑚_𝑜 𝑓 𝑠𝑎 𝑗 ,𝑟𝑖 = | [𝑜 𝑗𝑖1 ...𝑜 𝑗𝑖𝑛] |
7 𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 = 𝐹𝑎𝑙𝑠𝑒

8 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇 (𝑟𝑖 , 𝑎 𝑗 , [𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 ])
9 end

10 end
11 for 𝑖 iterations do
12 if all requests are satisfied or all satellites are at max

capacity or the requests satisfied in the previous two
iterations are the same then

13 exit
14 end
15 for each agent 𝑎 𝑗 ∈ 𝐴 do
16 for each request 𝑟𝑖 ∈ 𝑅 do
17 if not on the first iteration then
18 𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝑇𝐴𝑇𝑈𝑆 (𝑟𝑖 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛, 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛)
19 end
20 if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑢𝑠𝑎 𝑗 ,𝑟𝑖 == 1 then
21 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 , 𝑛𝑢𝑚_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠𝑎 𝑗 ,𝑟𝑖 =

𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸 (𝑟𝑖 , 𝑎 𝑗 )
22 if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 valid then
23 𝐸𝐿𝐼𝑀𝐼𝑁𝐴𝑇𝐸_𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 )
24 𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 = 𝑇𝑟𝑢𝑒

25 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇 (𝑟𝑖 , 𝑎 𝑗 , [𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 ])
26 end
27 end
28 end
29 end
30 end
31 return 𝑆 ;



Algorithm 4: Broadcast Decentralized Contention
1 function BDContention (𝑅,𝑂);
Input :A set of requests 𝑅, a set of overflights 𝑂 .
Output :𝑆 , a set of schedules for each agent 𝑎 𝑗 ∈ 𝐴.

2 for each agent 𝑎 𝑗 ∈ 𝐴 do
3 for each request 𝑟𝑖 ∈ 𝑅 that 𝑎 𝑗 has overflights for do
4 𝑛𝑢𝑚_𝑜 𝑓 𝑠𝑎 𝑗 ,𝑟𝑖 = | [𝑜 𝑗𝑖1 ...𝑜 𝑗𝑖𝑛] |
5 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇 (𝑟𝑖 , 𝑎 𝑗 , [𝑛𝑢𝑚_𝑜 𝑓 𝑠𝑎 𝑗 ,𝑟𝑖 ])
6 end
7 end
8 for each agent 𝑎 𝑗 ∈ 𝐴 do
9 𝑆𝑂𝑅𝑇 (𝑅)

10 for each request 𝑟𝑖 ∈ 𝑅 that 𝑎 𝑗 has overflights for do
11 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑢𝑠𝑎 𝑗 ,𝑟𝑖 =

𝑆𝐸𝐿𝐹_𝐴𝑆𝑆𝐼𝐺𝑁 (𝑟𝑖 , 𝑎 𝑗 , 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 )
12 end
13 end
14 for 𝑖 iterations do
15 if all requests are satisfied or all satellites are at max

capacity or the requests satisfied in the previous two
iterations are the same then

16 exit
17 end
18 for each agent 𝑎 𝑗 ∈ 𝐴 do
19 for each request 𝑟𝑖 ∈ 𝑅 do
20 if not on the first iteration then
21 𝑈𝑃𝐷𝐴𝑇𝐸_𝑆𝑇𝐴𝑇𝑈𝑆 (𝑟𝑖 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛, 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛)
22 end
23 if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑢𝑠𝑎 𝑗 ,𝑟𝑖 == 1 then
24 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 , 𝑛𝑢𝑚_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠𝑎 𝑗 ,𝑟𝑖 =

𝑆𝐶𝐻𝐸𝐷𝑈𝐿𝐸 (𝑟𝑖 , 𝑎 𝑗 )
25 if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 valid then
26 𝐸𝐿𝐼𝑀𝐼𝑁𝐴𝑇𝐸_𝐶𝑂𝑁𝐹𝐿𝐼𝐶𝑇𝑆 (𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑎 𝑗 ,𝑟𝑖 )
27 𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 = 𝑇𝑟𝑢𝑒

28 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 𝑗 ,𝑟𝑖 =𝑊𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 or𝑊𝑟𝑎𝑡𝑖𝑜

29 𝐵𝑅𝑂𝐴𝐷𝐶𝐴𝑆𝑇 (𝑟𝑖 , 𝑎 𝑗 , [𝑜 𝑓 _𝑓 𝑜𝑢𝑛𝑑𝑎 𝑗 ,𝑟𝑖 ,
𝑛𝑢𝑚_𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡𝑠𝑎 𝑗 ,𝑟𝑖 , 𝑟𝑒𝑤𝑎𝑟𝑑𝑎 𝑗 ,𝑟𝑖 ])

30 end
31 end
32 end
33 end
34 end
35 return 𝑆 ;

4 EMPIRICAL EVALUATION
We used grid search to tune the values for 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 , 𝑃𝑎𝑠𝑠𝑖𝑔𝑛 , and
𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛 for each algorithm.We searched the range of probabilities
from 0.1 to 1.0 for the combination of probabilities that performed
the best on a training problem of 10 Skysats scheduling 1,030 re-
quests (634 point targets, 66 selected for daily observation) over
1 week (1 August 2021-8 August 2021) for a subset of BD algo-
rithm variations (Table 2). Notably, the algorithms performed best
with a low probability of initial assignment, 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 , and high

probability of self-assignment, 𝑃𝑎𝑠𝑠𝑖𝑔𝑛 . If fewer agents are initially
self-assigned to observe a request, more may self-assign only as
needed with high certainty, without agent capacities reaching 𝑛𝑐𝑎𝑝
early in execution.

Table 2: Best probability values for a subset of algorithms
after grid search.

BD <algorithm type>-<sort
type>-<reward type>

𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑃𝑎𝑠𝑠𝑖𝑔𝑛 𝑃𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛

BD Contention-LFO-Difference 0.1 0.9 0.6
BD Contention-GFO-Ratio 0.1 1.0 0.2
BD Contention-RD-Ratio 0.1 1.0 1.0
BD Request Satisfaction-RD 0.1 0.9 0.7

We evaluate our algorithms on the following problem:
(1) SchedulingHorizon: 12 hours (00:00:00 1August 2021 - 12:00:00

1 August 2021).
(2) Requests: 634 terrestrial point targets were each divided into

12 independent requests, corresponding to each hour of the
scheduling horizon (7,608 total). Across all agents, there were
non-zero overflights in the scheduling horizon for 3,139 of
these requests, yielding the input set.

(3) Agents: 228 total, composed of Planet Skysats A, B, and C
1-19, plus 207 Doves available on the NORAD Celestrak site
as of 8 February 2022.

The Centralized and each of the BD algorithms run until one of
four termination conditions: 1) no improvement between consecu-
tive iterations, 2) all requests satisfied, 3) all agents at capacity, or 4)
the number of iterations hits some user-specified cap. In the results
below, all multi-iteration algorithms terminated at condition 1. Fig-
ures 5 and 6 show results from Centralized, Highly Decentralized,
and the subset of Broadcast Decentralized algorithm variations
with the following naming convention: BD-<algorithm type>-<sort
type>-<𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 type>-<reward type>. Highly Decentralized and
Centralized ran for one and three iterations respectively, but we plot
their metrics from the time of their last iterations to time of the last
iteration of the longest running algorithm for clearer comparison.

Figure 4: Broadcasts by iteration and algorithm.



Figure 5: Request satisfaction by iteration and algorithm.

Figure 6: Total observations per request by iteration and
algorithm.

In the Centralized algorithm, a master node only broadcasts a
final schedule of requests to observe out to each agent. For the
decentralized algorithms, the master node initially broadcasts each
request to every agent and every agent broadcasts its current sched-
ule of requests back to that node at the end of each iteration. In the
iteration phase of the Broadcast Decentralized algorithms, the num-
ber of broadcasts is 𝑂 (𝑛2) in the number of agents (Figure 4). The
size of the inter-agent broadcasts is only a few words, with agents
broadcasting three times more information in BD Contention than
BD Satisfaction (Table 1). A user may prefer BD Request Satisfaction
to BD Contention if they aim to limit inter-agent communication.

Due to the lack of coordination among agents, the Highly Decen-
tralized algorithm has the highest rate of redundant observations
(Figure 6) and a satisfaction rate that lags behind the rest (Figure 5).
The Centralized algorithm provides an upper bound to compare
our distributed methods to but requires a single agent to manage
state for all others and does not allow for computation to be paral-
lelized unlike the distributed algorithms. The BD algorithms employ
distributed heuristic search and exchange guaranteed optimality
of solution quality in favor of speed of scheduling. Since our cur-
rent results are from a single-threaded simulation of distributed
execution across agents, there is an 𝑂 (𝑛) inflation in runtime. For

each iteration and each agent, the solutions for our instance of the
continuous planning problem require only a few seconds.

Our short scheduling horizon and large number of repeat ob-
servations result in a highly conflicted scheduling problem. The
better performing distributed algorithms have a lower 𝑃𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒
and successfully eliminate redundant overflights every iteration
until approaching a 1:1 ratio of total observations per request to
proportion of requests satisfied (Figures 5, 6). This suggests that in
highly conflicted scheduling problems, it is more effective for mini-
mal agents to initially attempt to schedule a request and additional
agents to self-assign as needed than for excess agents to unassign
themselves between iterations.

5 CONCLUSIONS
Increased space observation capabilities represent opportunities for
improved space-based monitoring of a wide range of Earth Science
phenomena including but not limited to volcanoes, flooding, wild-
fires, cryosphere, and biosphere. Increased in-situ sensing via IoT
also can provide significant information to study these phenomena.
One challenge to such developments is that of allocating observa-
tion assets. We describe a range of centralized and decentralized
methods for allocating satellite agents to observations.

In particular, we outline two Broadcast Decentralized algorithms
that implement heuristic search approaches inspired by DCOP algo-
rithms to search for quick, approximate solutions to the large-scale
constellation request allocation problem with low data volume for
agent coordination. Most coordination occurs exclusively between
scheduling agents without the supervision of a master agent or the
redundancy of scheduling without inter-agent communication.

We allow users to moderate the amount of information shared
among agents when coordinating on request allocation, how agents
determine whether to initially self-assign to requests, the order in
which they consider requests, and the reward functions agents
use to assess their request satisfaction. We plan to expand on this
initial study of distributed algorithms to solve the request allocation
problem by 1) exploring challenges in the continuous scheduling
domain, where agents may be lost or compromised and requests
may be modified, added, or removed during scheduling and 2)
studying communications patterns between agents.

ACKNOWLEDGMENTS
Portions of this work were performed by the Jet Propulsion Labo-
ratory, California Institute of Technology, under contract from the
National Aeronautics and Space Administration.

REFERENCES
[1] Sean Augenstein, Alejandra Estanislao, Emmanuel Guere, and Sean Blaes. 2016.

Optimal Scheduling of a Constellation of Earth-Imaging Satellites, for Maximal
Data Throughput and Efficient Human Management. In ICAPS 2016 (International
Conference on Automated Planning Scheduling). London, UK. http://www.aaai.
org/ocs/index.php/ICAPS/ICAPS16/paper/download/13173/12696

[2] James Boerkoel, James Mason, Daniel Wang, Steve A. Chien, and Adrien Maillard.
2021. An Efficient Approach for Scheduling Imaging Tasks Across a Fleet of
Satellites. In International Workshop on Planning Scheduling for Space (IWPSS).
https://ai.jpl.nasa.gov/public/papers/Boerkoel_IWPSS2021_paper_23.pdf

[3] Andrew Branch, Steve A. Chien, Yulia Marchetti, Hui Su, Longtao Wu, James
Montgomery, Maggie Johnson, Benjamin Smith, Lukas Mandrake, and Peyman
Tavallali. 2021. Federated Scheduling of Model-Driven Observations for Earth
Science. In International Workshop on Planning Scheduling for Space (IWPSS).
https://ai.jpl.nasa.gov/public/papers/Branch_IWPSS2021_paper_12.pdf

http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/download/13173/12696
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/download/13173/12696
https://ai.jpl.nasa.gov/public/papers/Boerkoel_IWPSS2021_paper_23.pdf
https://ai.jpl.nasa.gov/public/papers/Branch_IWPSS2021_paper_12.pdf


[4] Steve A. Chien, Benjamin Cichy, Ashley Davies, Daniel Tran, Gregg Rabideau, Re-
becca Castaño, Rob Sherwood, Daniel Mandl, Stuart Frye, Seth Shulman, Jeremy
Jones, and Sandy Grosvenor. 2005. An Autonomous Earth-Observing Sensorweb.
IEEE Intelligent Systems (May/June 2005), 16–24. https://ai.jpl.nasa.gov/public/
papers/chien_IEEEIS2005_AutonomousSenworweb.pdf

[5] Steve A. Chien, Ashley G. Davies, Joshua Doubleday, Daniel Q. Tran, David
Mclaren, Wayne Chi, and Adrien Maillard. 2020. Automated Volcano Monitoring
Using Multiple Space and Ground Sensors. Journal of Aerospace Information
Systems (JAIS) 17:4 (2020), 214–228. https://doi.org/10.2514/1.I010798

[6] Steve A. Chien, Joshua Doubleday, David Mclaren, Ashley Davies, Daniel Tran,
Veerachai Tanpipat, Siri Akaakara, Anuchit Ratanasuwan, andDanielMandl. 2011.
Space-based Sensorweb Monitoring of Wildfires in Thailand. In International
Geoscience and Remote Sensing Symposium (IGRSS 2011). Vancouver, BC. https:
//ai.jpl.nasa.gov/public/papers/chien_igarss2011_spacebased.pdf

[7] Steve A. Chien, David Mclaren, Joshua Doubleday, Daniel Tran, Veerachai
Tanpipat, and Royol Chitradon. 2019. Using Taskable Remote Sensing in a
Sensor Web for Thailand Flood Monitoring. Journal of Aerospace Informa-
tion Systems (JAIS) 16, 3 (2019), 107–119. https://doi.org/10.2514/1.I010672
arXiv:https://doi.org/10.2514/1.I010672

[8] Ferdinando Fioretto, Enrico Pontelli, and William Yeoh. 2018. Distributed Con-
straint Optimization Problems and Applications: A Survey. Journal of Artificial
Intelligence Research 61 (Mar 2018), 623–698. https://doi.org/10.1613/jair.5565

[9] David E. Joslin and David P. Clements. 1999. Squeaky Wheel Optimization.
Journal of Artificial Intelligence Research 10 (May 1999), 353–373. https://doi.org/
10.1613/jair.561

[10] Rajiv T. Maheswaran, Jonathan P. Pearce, and Milind Tambe. 2004. Distributed
Algorithms for DCOP: A Graphical Game-Based Approach. In 17th International

Conference on Parallel and Distributed Computing Systems (PDCS-2004).
[11] Daniel Mandl, Stuart Frye, Pat Cappelaere, Matthew Handy, Fritz Policelli,

Mc-cloud Katjizeu, Guido Langenhove, Guy Aube, Jean-Francois Saulnier, Rob
Sohlberg, Julie Silva, Nataliia Kussul, Sergii Skakun, Stephen Ungar, Robert Gross-
man, and Jörg Szarzynski. 2013. Use of the Earth Observing One (EO-1) Satellite
for the Namibia SensorWeb Flood Early Warning Pilot. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing 6 (04 2013), 298–308.
https://doi.org/10.1109/JSTARS.2013.2255861

[12] Sreeja Nag, Alan S. Li, and James H. Merrick. 2018. Scheduling algorithms for
rapid imaging using agile Cubesat constellations. Advances in Space Research 61,
3 (Feb. 2018), 891–913. https://doi.org/10.1016/j.asr.2017.11.010

[13] Sean Phillips and Fernando Parra. [n.d.]. A Case Study on Auction-Based Task
Allocation Algorithms in Multi-Satellite Systems. https://doi.org/10.2514/6.2021-
0185 arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0185

[14] Gauthier Picard. 2021. Auction-based and Distributed Optimization Approaches
for Scheduling Observations in Satellite Constellations with Exclusive Orbit
Portions. arXiv:2106.03548 [cs.AI]

[15] Vishwa Shah, Vivek Vittaldev, Leon Stepan, and Cyrus Foster. 2019. Scheduling
the world’s largest earth-observing fleet of medium-resolution imaging satellites.
In International Workshop on Planning and Scheduling for Space. Organization for
the 2019 International Workshop on Planning and Scheduling . . . , 156–161.

[16] Weixiong Zhang, Guandong Wang, Zhao Xing, and Lars Wittenburg. 2005. Dis-
tributed Stochastic Search and Distributed Breakout: Properties, Comparison and
Applications to Constraint Optimization Problems in Sensor Networks. Artif.
Intell. 161, 1–2 (jan 2005), 55–87.

https://ai.jpl.nasa.gov/public/papers/chien_IEEEIS2005_AutonomousSenworweb.pdf
https://ai.jpl.nasa.gov/public/papers/chien_IEEEIS2005_AutonomousSenworweb.pdf
https://doi.org/10.2514/1.I010798
https://ai.jpl.nasa.gov/public/papers/chien_igarss2011_spacebased.pdf
https://ai.jpl.nasa.gov/public/papers/chien_igarss2011_spacebased.pdf
https://doi.org/10.2514/1.I010672
https://arxiv.org/abs/https://doi.org/10.2514/1.I010672
https://doi.org/10.1613/jair.5565
https://doi.org/10.1613/jair.561
https://doi.org/10.1613/jair.561
https://doi.org/10.1109/JSTARS.2013.2255861
https://doi.org/10.1016/j.asr.2017.11.010
https://doi.org/10.2514/6.2021-0185
https://doi.org/10.2514/6.2021-0185
https://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2021-0185
https://arxiv.org/abs/2106.03548

	Abstract
	1 Introduction
	2 Problem Formulation
	3 A Range of Approaches
	3.1 Centralized Algorithm
	3.2 Highly Decentralized Algorithm
	3.3 Broadcast Decentralized Algorithms

	4 Empirical Evaluation
	5 Conclusions
	Acknowledgments
	References

